simulations¶
Attributes¶
Classes¶
Geometric units + Msun = 1 |
|
CGS units |
|
Standard SI units |
|
Class representing simulation data |
Functions¶
|
Execute cmd in workdir |
|
Convert q_ADM, p_ADM to EOB, 2PN trafo. |
|
q_p : [r , phi ] |
|
q_c : [x , y ] |
Module Contents¶
- simulations.adm_to_eob(q_vec, p_vec, nu)[source]¶
Convert q_ADM, p_ADM to EOB, 2PN trafo. (E18) and (E19) of https://arxiv.org/pdf/1210.2834.pdf
q_vec: ADM puncture relative distance, x_p - x_m, cartesian p_vec: ADM puncture relative linear momentum, p_p, cartesian, nu-normalized nu : symmetric mass ratio
- class simulations.Simulations(path='./', metadata_ext=METADATA_EXTENSION, comments_ignore=COMMENTS_IGNORE, keymap=KEYMAP, sxs_unpack=True, rit_ids_unpack=False)[source]¶
Class representing simulation data
- pathpath to the metadata
search is recursive from this level
metadata_ext : extension(s) of metadata files
comments_ignore : list of characters to ignore
keymap : dictionary to map key names
- sxs_json_extract_append(db, catalog, f)[source]¶
Special method to extract single-simulation metadata from sxs_catalog.json and append those
- rit_tex_read_punctures_id(fname)[source]¶
- m ADM}/m,|a_1/m_1^H|,|a_2/m_2^H|
or Run, x_1/m, x_2/m, P_r/m, P_t/m, m^p_1/m, m^p_2/m, m^H_1/m, m^H_2/m, M_{
m ADM}/m, e, N_{orb}
- rit_extract_punctures_id(db, id_db)[source]¶
Special method to extract punctures ID in ADM coordinates from id_db and add it to simulation
- parse_metadata(keymap=KEYMAP)[source]¶
Parse metadata dictionary For basic quantities: * add keys with uniform names across catalogs * make sure necessary data are present
- search(key, val, bound=0.0)[source]¶
Return list of simulations matching a particular key-value pair
- ADM_to_EOB(nu, q_adm, p_adm, polar=False)[source]¶
Transform the initial conditions q_adm, p_adm to EOB coordinates.
- www_get_RIT(simulation)[source]¶
Return command to get RIT data from www
RIT catalog offers 3 type of files, names are based on a few metadata entries
Example:
catalog-tag = RIT:BBH:0001 resolution-tag = n100 id-tag = id3
‘Metadata/RIT:BBH:0001-n100-id3_Metadata.txt’ ‘Data/ExtrapPsi4_RIT-BBH-0001-n100-id3.tar.gz ‘Data/ExtrapStrain_RIT-BBH-0001-n100.h5’
Note: Currently relies on the system call ‘wget’. There python packages (see below), but would need installation. What is available within anaconda?
- www_get_SXS(simulation)[source]¶
Return command to get SXS data from www
TODO SXS metadata contains a ‘url’ key to Zenodo can use wget, curl or the various pyton-based packages: https://pypi.org/project/requests/ https://pypi.org/project/zenodo-get/